Preparation and magneto-nanocrystallization of amorphous alloy Fe60Co26Hf7B6Cu1
نویسندگان
چکیده
منابع مشابه
Nanocrystallization in Co67Cr7Fe4Si8B14 Amorphous Alloy Ribbons
The nanocrystallization of Co67Fe4Cr7Si8B14 amorphous ribbons which prepared by planar flow melt spinning process (PFMS) was investigated. Crystallization of the ribbons was studied by differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The DTA result of amorphous ribbon at heating rate of 10˚C/min showedoccurrence of phase transitions in two...
متن کاملKINETICS OF -Fe NANOCRYSTALLIZATION IN Fe55Cr18Mo7B16C4 BULK AMORPHOUS ALLOY
Abstract: In this research work, crystallization kinetics of Fe55Cr18Mo7B16C4 alloy was evaluated by X-ray diffraction, TEM observations and differential scanning calorimetric tests. In practice, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates. Results showed that a two -step crystallization process occurred in the alloy in which - Fe phas...
متن کاملnanocrystallization in co67cr7fe4si8b14 amorphous alloy ribbons
the nanocrystallization of co67fe4cr7si8b14 amorphous ribbons which prepared by planar flow melt spinning process (pfms) was investigated. crystallization of the ribbons was studied by differential thermal analysis (dta), x-ray diffraction (xrd) and transmission electron microscopy (tem). the dta result of amorphous ribbon at heating rate of 10˚c/min showedoccurrence of phase transitions in two...
متن کاملNANOCRYSTALLIZATION MECHANISMS OF Fe52Cr18Mo7B16C4Nb3 BULK AMORPHOUS STEEL
Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated using X-ray diffraction, differential scanning calorimetric (DSC) tests and TEM observations in this research work. In effect, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates (10, 20, 30, 40 K/min) and kinetic models (i.e. Kissinger- Starink, Ozawa, and Matusita methods). ...
متن کاملNanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature.
It is known that nanocrystallites can form in shear bands produced during severe bending or high-energy ball milling of thin ribbons of a metallic glass. We present direct experimental evidence that highly confined and controlled local contact at the ultrafine scale in the form of quasi-static nanoindentation of a bulk glassy metal alloy at room temperature can also cause nanocrystallization. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2009
ISSN: 1742-6596
DOI: 10.1088/1742-6596/188/1/012038